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A FAST CONVERGING CASCADED ADAPTIVE CANCELLER 

I. Introduction 

The use of adaptive linear techniques to solve signal processing problems is needed particularly when 
the interference environment external to the signal processor (such as for a radar or communication 
system) is not known a priori. Due to this lack of knowledge of an external environment, adaptive 
techniques require a certain amount of data to cancel the external interference. The amount of data (the 
number of independent samples per input sensor) required so that the performance of the adaptive 
processor is close (nominally within 3 dB) to the optimum is called the convergence measure of 
effectiveness (MOE) of the processor. The minimization of the convergence time is important since in 
many environments the external interference changes rapidly with time. 

With assumption that the input interference is Gaussian, the classical adaptive linear processor with 
N inputs is based on forming the sample covariance matrix via maximum likelihood (ML) estimation. The 
linear weight vector is found by multiplying the inverse (assuming it exists) of the sample covariance 
matrix by a desired steering vector. The convergence MOE of this technique which is called the sample 
matrix inversion (SMI) algorithm [1] is (with some assumptions) independent of the external noise 
environment and is approximately twice the number of independent sensor inputs. However, if fewer 
samples are available, performance will degrade. For example, if there were only one narrowband (NB) 
jammer present and N = 50 sensors, the SMI requires roughly K = 2N = 100 samples per input 
channel. Intuitively only a few samples should be required since only one NB jammer is present. 

Due to the failure of the existence of the ML solution for K < N samples (the sample covariance 
matrix is singular), there have been several techniques proposed to improve convergence. Techniques 
such as loaded sample matrix inversion (LSMI) [2], the adaptive-adaptive technique [3], and subspace 
techniques [4,5,6] have been proposed. However, a number of these techniques are based on heuristic 
constructions. Most subspace techniques such as in [4,5,6] are based on utilizing only the first / (or J + 
1 if signal is present) dominant eigenvectors, where/ is the number of independent narrowband jammers. 
Hence, they often assume knowledge of J or require that J be estimated by semi-heuristic techniques such 
as theAIC or MDL [7]. However, these techniques are not derived via fundamental criteria such as a 
ML estimate, as is the SMI. Also they are often limited in their applicability or require intuitive rules to 
determine the dimension and/or basis of the subspace. In [8,9], we presented a new technique that 
provides typically similar performance as the heuristic techniques, and does not require a priori 
knowledge of J. The new fast maximum-likelihood (FML) technique assumes only knowledge of the 
receiver thermal noise level; convergence MOE is similar to many of the fast converging heuristic 
techniques, e.g. in a narrowband (NB) jamming scenario, convergence time is on the order of twice the 
number of NB jammers. The technique also works for any external interference environment, for example 
for wideband jammers and clutter without requiring modification. 

An adaptive canceller is a particular form of adaptive linear processor (ALP). In general, the ALP 
assumes that the desired input signal has the form of an N-length steering vector, s, where N is the 
number of sensor inputs to the ALP and it is assumed s's = 1 (' denotes conjugate transpose). An 
adaptive canceller assumes that s = (1 0 0 ... 0)T = 10

T (where T denotes transpose) and the adaptive 
weight on the main channel equals one. For this form, it is seen that all of the desired signal energy is 
assumed to be in the first input of the ALP. The first input is called the main channel and the other inputs 
are called auxiliary channels. For example, a common implementation of an adaptive canceller is the 
adaptive sidelobe canceller (ASLC) of a radar system. For this configuration the main channel is the 
output of the radar's main antenna and the auxiliary channels are formed from much physically smaller 
auxiliary antennas which are in close proximity of the main antenna. 
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If" digital processing is employed, any ALP can be transformed into an adaptive canceller 
configuration. This is because the multiplication of the /V-inputs to the ALP by any N x N nonsingular 
matrix does not change the signal-to-noise (S/N) performance measure of the ALP. It can be shown that 
there always exists a nonsingular matrix A such that As = 10. 

One of the advantages of an adaptive canceller configuration is that it can be laid out functionally in 
a highly numerically efficient parallel/pipelined cascaded signal processing architecture as illustrated by 
the generic cascaded canceller (GCC) pictured in Fig. 1. For example, it is known that the SMI algorithm 
fors = l0canbe replicated exactly by using the Gram-Schmidt (GS) canceller configuration [10,11]. For 
this configuration, canceller inputs (from the right in the figure) are sequentially orthogonalized 
(decorrelated) with respect to other canceller inputs. Data is inputted as an N x K block of data where 
K is the number of samples per input channel used to calculate the weights. After the A'' - 1 weights are 
calculated at the 1st level of GS canceller, the N x AT data block is weighted properly and passed as an 
(N - 1) x K data block to the second level for processing. Thereafter a new N x K input data block 
can be processed by the 1st level. This sequential processing, whereby input data blocks are processed 
and passed from level-to-level, results in an enhanced processing throughput rate. The advantage of the 
cascaded canceller configuration is not that it requires significantly less numerical operations (which could 
be implemented as software) but that it can be laid out in a highly parallel/pipelined structure in 
hardware. 

In this paper, we develop what we call a fast cascaded canceller (FCC). The FCC will have almost 
identical convergence performance of the FML canceller for interference scenarios where the number of 
jammers is upperbounded. By this we mean that if the number of jammers is less than a certain number, 
the convergence performance of the FCC and FML are almost identical. When the number of jammers 
exceeds this upperbound, there is a graceful degradation in FCC performance with respect to the FML 
as the number of jammers increase. However, it was observed for N < 12 and representative jamming 
scenarios where the number of jammers varied from 1 to N - 1 (normally the upper limit on jammers 
such that the jamming can be effectively eliminated), that the FCC's average convergence performance 
is within 1 dB of the FML's; i.e. if the FML's performance is -3 dB from the optimum for a given 
number of input sample vectors, then the FCC's performance is no greater than —4 dB from optimum. 
For the FCC development we assume (as was done for the FML) that the unknown interference 
covariance matrix has the structure of an identity matrix (associated with system noise) plus an unknown 
psdh matrix (associated with the external noise). 

II. Review of FML Canceller 

The ML estimate for the A''by A covariance matrix that results under the Gaussian assumption and 
K > N is the sample covariance matrix (SCM). The convergence MOE is on the order of K = 2N. We 
derived in [8,9] the ML estimate assuming a structured covariance matrix of the form 

R = cIN + RQ, 

where R0 is positive semi-definite Hermitian (psdh), K < N, the rank of R0 = M0 < N, and JN is the N x 
N identity matrix. We assume that the thermal noise level c is known and that M0 is unknown. Without 
loss of generality, we take c = 1 in Eq. (1). In much of the adaptive literature, the thermal noise level 
has been assumed unknown. Justification for this assumption can be traced to several papers [12,13]. 
Certainly, the thermal noise level is unknown in many time-series problems such as in the analysis of sun- 
spot data. However, in systems operating at the microwave frequencies, the thermal noise level is 



dominated not by the unknown external thermal noise but by the receiver thermal noise [14, p. 1.4]. 
Hence, the thermal noise power level is known a priori for many practical interference cancellation 
problems. Under these conditions we have found a fast converging ML solution for the case K < N. 

The ML solution for the structured matrix R - Ix + /?,, has been.derived in previous published work 
for the case K > N and the SMC is nonsingular. In [8,9] we showed that a solution also surprisingly 
exists for K < N. In fact, a solution can be found even for a single sample. There are only a few cases 
[15] of constrained covariance matrices where a ML solution exists for such small sample cases, and most 
of these are not relevant to existing problems. Our solution is, however, directly relevant to many systems 
that operate in the microwave region, since the thermal noise is dominated by the receiver noise, of which 
the statistics can be assumed known. 

Let R = Z * ZT/K, where Z is the N by K sample data matrix and R is the SCM. The K columns 
of Z are assumed to be zero-mean, independent, and identically distributed (idd) Af-length complex 
Gaussian random vectors with covariance matrix R. The individual elements of Z are complex circular 
random variables (i.e. the real and imaginary parts are idd). The n'th (n = 1, ..., N) row of Z, denoted 
by z[ (a AMength vector), represents the sampled data on the n'th sensor. The data in a given column 
of Z is assumed to be time (or range) coincident. Hence, each AMength random vector (a column of Z) 
is often called a snapshot of input data. 

The joint probability density function (PDF) of the data under the Gaussian assumption and R 
nonsingular is 

p{Z\ R0) = 2T\R\~
K
 exp - Tr(KR~]R), (0 

where R = IN + R0, and | -| and Tr(-) denote determinant and trace, respectively. The ML estimate (if 
it exists) for the covariance matrix is given by 

/?MI   = arg min In  \R\   + Tr(R-lR). (2) 
R 

It is known that the ML solution exists for K > N and the SCM is nonsingular [16]. Consider an 
eigenvalue decomposition (evd) of the SCM, R = $A<£', where A is an N x /V diagonal matrix with 
diagonal entries X, > X2 ... > Xw that are eigenvalues of R and $ is an N x //unitary eigenmatrix. 
Denote M as the number of eigenvalues that are greater than one. Set AQ — Diag 
(X,, Xj, ..., \M, 1, 1, ..., 1) where Diag (•) denotes a diagonal matrix with elements and ordering 
specified by its arguments. The ML estimate for R exists for K > N and is given by [16]. 

R     = 4>A$' 

In [8,9], we showed that this same estimate can be used for 1 < K < N. This result is stated as the 
following theorem. 

Theorem 1: Under the condition R = IN + R0, where i?0 is a psdh matrix, the ML solution, 
7? = arg minÄ In |7?|   + Tr(Ä"'i?), is given by 

R     = <£A<I>' (3) 

for any K > 1, and $ and AQ are as defined above. 



The FML /V-length-vector weight, denoted by wFM| , is proportional to RM[s* where s is the N- 
length steering vector of the desired signal. For the canceller configuration, s = 10. In addition for the 
canceller configuration, the first element of wFMI  is constrained to be equal to one. If r^L is the (1,1) 
element of RM[ then 

VVFMI. = — ^MU0- (4) u 
'ML 

We will functionally denote the FML canceller as seen in Fig. 2. Here we also show N AT-length input 
vectors, z (n = 1, 2, ..., N). The input z, is designated as the main channel and zn (n = 2, 3, ..., N) 
are called the auxiliary channels. The output of the FML structure is the //-length vector weight, wFML. 

We apply the weight wFML to data (a snapshot) that is statistically independent of the data that was 
used to calculate wFML and denote this snapshot as z. This will be referred to as nonconcurrent 
processing. The snapshot of the data, z, is also identically distributed as the snapshots of the data that are 
used to calculate wFM| . We apply wFML to z to form the scalar output residue 

rt - w^z. (5) 

We will examine and compare the statistical characteristics of r, with the FCC output residue in the 
subsequent analysis. 

III. Fast Cascaded Canceller 

The general functional structure of a cascaded canceller was shown in Fig. 1. The fundamental 
building block of the structure is the 2-input canceller whereby data in the right input of the 2-input 
canceller is weighted by a complex scalar and thereafter subtracted from the left input. For example if 
u and v denote the AT-length vectors of the left and right inputs, w denotes the complex scalar weighting, 
and r the AT-length output residue vector, then r = u - wv. (Note from now on for notational purposes 
we write without loss of generality r = u + wv where w = -w). We will associate the i,j 2-input 
canceller with w..; i.e. the i,j 2-input canceller can be found at the /'th level andy'fh column of the GCC 
seen in Fig. 1. Assume that the input to GCC are the N ÄT-length input vectors zn(n = 1, 2, ..., K). 
Define xf y = 1, 2, ..., A7 - / + 1 as the AT-length output vector of the ij 2-input canceller with 

xy> = z., j = i, ...,N. <6> 

Thus 

XJ 

M=.B.ÄT«. i=U2,...,N (?) 

j „*,♦!,     y- = !, 2, .... # - i + 1. 

The weight wr is a function of the inputs of the i,j 2-input canceller. For example, for the GS 2-input 
canceller 

w7 = -(x^yiixfp, <8) 

where ||-|| denotes the vector magnitude. 

For the FCC, we use the 2-input modified FML (MFMLj) as a building block as illustrated in Fig. 
3. The MFMLj will be described in detail in the following section. The 2-input MFMLj is used to find 



the scalar complex weight for each /",./ canceller. However the 2-input FML algorithm must be modified 
because the covariance matrix of" the 2 inputs into the ij 2-input canceller associated with the internal 
thermal noise is no longer a 2 x 2 identity matrix, /2, except on the first level. Furthermore, it can be 
derived exactly because we know how the input noises on the various channels have been weighted as 
they traverse through the cascaded canceller structure up to the ij 2-input canceller. In order to calculate 
the 2x2 internal noise covariance matrix at the 2-input cancellers, it is necessary to know how each 
input channel z (n = 1, ..., AO is weighted at the output of the ij 2-input canceller. Let y(j represent 
the output of the ij MFML2. We define /z(,1(/',«) to be weighting on the z„ at the ij output. Simply 

stated 

y    = £  h%\n)zK. 
(9) 

It can be shown the h{!)(j,n) can be found reiteratively as follows: 

j = 1, 2, ..., N - i 
h(,t"(j,n) = h%,n) + w^'XN - i + 1,M),     ^ = N (1U) 

Initial condition: h{i)(j,n) = 6jn    j, n = 1, ..., N where bjn = 1 if; = n, 0 otherwise. 

How the h^(j,n)'s are used will be described in the next section. 

If we are performing noncurrent processing then we are interested in the equivalent weighting of the 
cascaded canceller structure illustrated in Fig. 3. We desire to know the equivalent AMength weighting 
vector, denoted by wPCC of passing the AZ-length nonconcurrent data vector z through the FCC. It is 
straightforward to show that 

(/i(A1(l, 1), /z(m(l, 2), ..., hm(l,N))T, (11) 
M

 FCC 

with/2(,V)(l, 1) = 1. 

IV. 2-Input Modified FML 

In this section, we discuss in more detail the implementation of the 2-input MFML2. As it was 
previously mentioned the 2x2 internal noise covariance matrix of the inputs of the /,;' 2-input canceller 
is no longer equal to I2. Denote this 2x2 covariance matrix as Rtj. We can derive in simple fashion this 
covariance matrix with knowledge of h'(j,n) and h'(N - i + 1, n), (n = 1, 2, ..., N). Set 
h(0 = [h{i)(J, 1), hin(j,2), ..., h(i>(j,N)]T. From (9) and the fact that the internal noise power on 
Zn(n = 1, ..., N) is 1, it follows that 

Äv(i, i) = hy"h«, <12a) 

i?..(2,  1) = h^,h«, (12b) 

- * (12c) 
/?,.,.(!, 2) =*.*<2, 1), 

,w»   u(o (12d) Ru(2, 2) = h^.hJJU,. 

Let R. be the 2 x 2 SCM of the ij 2-input canceller. The elements of RtJ are found as 



/?..(1,  1) = xf'xf/K, (13a) 

Rtj{2,  1) =xlfc.tx?/K, (13b) 

fyl, 2) =/?,*(2,  1), »■                                               (13c) 

^(2, 2) = x^,x^,/K. (13d) 

Let /? denote the true 2x2 covariance of the /,/ canceller. Now R.. = R. + ft,.. where R„.. is some 
2x2 psdh matrix. In order to use the FML methodology, the internal noise covariance matrix must be 
the identity matrix. Thus we whiten the internal noise on the input to the i,j 2-input canceller. Let 
R0 = A'jjAij be the Cholesky decomposition of R.j where Atj is a_2 x 2 upper triangular matrix (for a 
2x2 hermitian matrix, this is easily found). We form a SCM, Rr as 

R,, = (A!)'1 R . A;- . (14) 

Let R'j be the true 2x2 covariance matrix associated with Rr. The 2x2 internal noise covariance 
matrix component of /?/. is /2. We now estimate R'.. via its ML estimate (see Theorem 1). Call this 
estimate /?/.' . The ML estimate of R.. is then 

R"u =A!.R.ad A... (15) 
>J ij    u     IJ 

The w.. is found by using (4). It can be shown that 

Ä,;,/(2,  1) ..,. 
w   =  - _L . (16) 

R!j (2' 2) 

In order to find Rlj   it may be necessary to perform the evd of Rr. It is pointed out that for a 2 x 
2 matrix this is very straightforward and that one can derive closed form solutions for the two 
eigenvalues/eigenvectors. In fact, because the sum of the outer products of the 2 eigenvectors is equal 
to I2, it will be found that only one of the eigenvectors must be found. Furthermore, finding this 
eigenvector is not always necessary. Let X, and X2 be the two eigenvalues of Rr with X,  > \. If X2 > 
1 or X, < 1 then it is not necessary to compute the eigenvector. This is because if X2 > 1 theni?,"'7 = Rr 

and if X, < 1 then R~   = R... It was noted in our simulations, assuming correlated interference was 
present at the input of the FCC, that the 2-input cancellers on the upper levels of the FCC implement the 
weights using R^ = R.. (which is the GS weight implementation). After the interference had been 
significantly reduced (somewhere in the middle levels of the FCC), the weights were calculated using the 
evd. At the bottom level of the FCC the weights were calculated using R? = R... 

VI. Results and Discussion 

In this section, we present representative simulation results that compare the FCC and FML 
convergence performances. We shall see that for interference scenarios where the number of jammers 
is upperbounded that the FCC and FML convergence performances are almost identical. We also compare 
the FCC and FML convergence performance with a canceller that we call the pseudo sample matrix 
inversion (PSMI) canceller. For K > N, the PSMI is exactly the SMI algorithm. However for K < N, 
since the SMI algorithm is not applicable (the SCM is singular), we use an alternate procedure which we 
now describe to find the canceller weighting vector. 



Let Z, be the (N - 1) x K data matrix associated with auxiliary channels (z,, ..., zN) and zw be the 
/^-length column vector associated with the main channel (z,). We can find a weighting vector of length 
N - 1, w^, such that 

7T (17) 
Z.,   w.  = z„. -■*-- v 

In fact for K < N - 1, there are an infinite number of solutions for \vA. We solve the \v, using the 
pseudoinverse: 

w, =z;(z;z;)-'zm- 

The pseudoinverse solution minimizes || w^ || with respect to all possible solutions of (17). The TV-length 
weight vector (1, -w^)T is the solution that we use for the PSMI when K < N - 1. For K > N, the 
SMI algorithm is used to find w,,. As with the FML and FCC the PSMI is implemented using 
nonconcurrent data. 

Although there are many configurations that can be considered for interference cancellation problems, 
for simplicity, we assume that an N element array of identical antenna elements exists such that the 
jammer vectors have the following form 

(1, exp Qdp, exp (2j0.), ..., exp ((N - 1)J0))T (19) 

where j = fT. The main channel is the left-most array element and the remaining N - 1 elements are 
the auxiliary channels. We model the external noise environment via its input covariance matrix. The N 
x N covariance matrix associated with J narrowband jammers can be represented as R0 = (rm) where 

ram = £   a,2 exp [j(/z - m)4>} + 5,„„, (20) 

<t>.(i = 1,2, ..., J) is the phase angle associated with the /"th jammer, and o] is the jammer power of 
the fth jammer normalized by the internal noise level. The <5„,„ contribution to the covariance matrix is 
associated with the internal thermal noise power. 

In order to compare different techniques, we will plot the normalized average signal-to-interference 
ratio (SIR), p, which is defined as the averaged output SIR ratio for a given technique divided by the 
optimal SIR that can be achieved when the optimal weight is used. Interference as defined here includes 
all unwanted interference including thermal noise. The optimal SIR is known to be SIR^ = lQR'llQ. 
Averaged over the Monte Carlos, p is defined by 

(21) MC 

MC 
lwl!0l 

w'/?w   SIR^ m m opt 

where wm is the random weight vector associated with a given canceller technique (FML, FCC, or PSMI) 
indexed by the Monte Carlo number and MC denotes the number of Monte Carlos. The kernel of the sum 
seen in (21) represents the normalized instantaneous SIR for a given Monte Carlo. The expected value 
of the nonconcurrent data has been taken and is exemplified by the R term in the denominator of the 
kernel. 

For some of our simulation results, we fix the jammer angles and powers and generate MC 
realizations of input data. For the rest of our simulations, we make the jammer angles and powers random 



variables and generate MC realizations. For this latter case, SIR,,,,, is a function of the jammer angles and 
powers for a given realization. Hence in (21), SIR0|„ will vary as m, the Monte Carlo index. 

We now show a number of simulation results for representative interference scenarios. In all cases 
the number of input channels to the canceller, N, is 20 and the number of Monte Carlos (MC) equals 
100. In Figs. 4-8, canceller performance, normalized average S/I, is plotted vs. the number of 
independent snapshots K for the canceller configurations: FCC, FML, and PSMI and various interference 
scenarios. The maximum K was chosen to be equal to 40 (=2N) which is normally the K chosen for 
"good" convergence performance ( — 3 dB on average from the optimal) for the SMI. We see from Figs. 
1-4 that for J < 4, the FCC and FML convergence performances are almost identical. The PSMI 
canceller performance is notably inferior to the FCC and FML over much of the range of K. It is 
interesting to note, however, that for 1 < K < N, a maximum occurs in the PSMI convergence 
performance, which in a number of cases is not much less than the FCC and FML performance. 

We see from Fig. 8 that for / = 5 the FCC convergence performance is noticeably less than FML's. 
It was observed over a number of cases (not presented here) that the FCC's convergence performance 
for a given jamming scenario (for certain jammer angles) was close to the FML's up to a certain number 
of jammers. After the required number of jammers had been reached, the convergence performance 
decreased monotonically with the increase in the number of jammers. However, it was observed (these 
plots are not presented here), for N < 12 and representative jamming scenarios where the number of 
jammers varied from 1 to N — 1 (normally the upper limit on jammers such that the jamming can be 
effectively eliminated), that the FCC's average convergence performance is within 1 dB of the FML's; 
i.e. if the FML's performance is -3 dB from the optimum for a given number of input sample vectors, 
then the FCC's performance is no greater than —4 dB from optimum. 

In Figs. 9-12, we plot the normalized average S/I averaged over a number of jammer angles and 
power realizations vs. K. For a given number jammers, /, for each Monte Carlo we choose /jammer 
angles independently which are uniformly distributed on [0°, 360°]. In addition, we choose each 
jammer's power from a uniform distribution on [15 dB, 40 dB]. From Figs. 9-12 we observe that the 
FCC's performance is almost exactly the same as the FML's for / < 5. For J > 5, there is a gradual 
decline in performance. 

The sampled standard deviation (s.d.) for a few of the cases presented in Figs. 4-12 are shown in 
Figs. 13-16. Here we observe that the FCC's s.d. is similar to the FML's when the FCC convergence 
performance is close to the FML's and that the FCC's and FML's s.d. is moderately better than the 
PSMI's for K approaching 2N (or 40). In fact one might argue that one reason for using the FML (or the 
FCC when its convergence performance is almost identical to the FML) rather than the SMI for K — 2N 
is that the FCC or FML output s.d. of the output residue is noticeably better than the SMI. 

The number of floating point multiplication operations (FPMOP) associated with finding the canceller 
weight for the FCC is approximately .5N2(3K + 20). For the FML canceller implemented with full 
singular value decomposition (svd) (all singular values and eigenvectors calculated via svd), the number 
of FPMOPs is approximately 3N2K + 4NK2. For the FML canceller implemented with partial svd (only 
the eigenvalues greater than 1 and their associated eigenvectors need be calculated) the number of 
FPMOPs = O(KNJ) (this assumes a NB jamming scenario). For the SMI canceller, 
FPMOP = .33N3 + KN2. Hence the number of FPMOP's needed to implement the FCC in software 
is roughly equivalent to either the FML or SMI implementations. However, as it was pointed out in the 
introduction, the advantage of the FCC is not its software numerical efficiency but its hardware numerical 



efficiency. The algorithm can be laid out functionally using a highly parallel/pipeline architecture. This 
structure is ideal for efficiently block processing input data blocks that are sequentially updated at each 
time step (or some other dimension). 

VII. Summary 

A fast-converging, highly parallel/pipeline cascaded canceller (FCC) has been developed which has 
convergence performance almost identical to the fast maximum likelihood (FML) canceller [8,9] for 
restricted jamming scenarios. For narrowband jamming scenarios, it has been shown that the FCC 
convergence performance is similar to the FML's when the number of jammers is below some 
upperbound. However, it was observed for N < 12 and representative jamming scenarios where the 
number of jammers varied from 1 to N - 1 (normally the upper limit on jammers such that the jamming 
can be effectively eliminated), that the FCC's average convergence performance is within 1 dB of the 
FML's; i.e. if the FML's performance is -3 dB from the optimum for a given number of input sample 
vectors', then the FCC's performance is no greater than -4 dB from optimum. For both the FML and 
FCC developments it is assumed that the unknown interference covariance matrix has the structure of an 
identity matrix plus an unknown positive semi-definite Hermitian (psdh) matrix. The identity matrix 
component is associated with the known covariance matrix of the system noise and the unknown psdh 
matrix is associated with the external noise environment. For narrowband jamming scenarios with J 
jammers where J is less than some upperbound, it was shown via simulation and analysis that the FCC 
and FML converge on the average -3 dB below the optimum in about U independent sample vectors 
per sensor input. Both the FCC and FML converged much faster than the SMI algorithm. 

References 

1. I.S. Reed, J.D. Mallett, and L.E. Brennan, "Rapid convergence rate in adaptive arrays," IEEE 
Transactions on Aerospace and Electronic Systems, vol. AES-10, no. 6, 853-863, Nov. 1974. 

2. B.D. Carlson, "Covariance matrix estimation errors and diagonal loading in adaptive arrays," 
IEEE Transactions on Aerospace and Electronic Systems, vol. 24, no. 4, 397-401, 1988. 

3. E. Brookner and J. Howells, "Adaptive-adaptive array processing," Proc. IEE, vol. 74, 602-604, 
1986. 

4. A.M. Haimovich and Y. Bar-Ness, "An eigenanalysis interference canceller," IEEE ASSP, vol. 
39, 76-84, Jan 1991. 

5. C.H. Gierull, "Statistical analysis of the eigenvector projection method for adaptive spatial filtering 
of interference," IEE Proc-Radar, Sonar Navig, vol. 144, 57-63, 1997. 

6. J.-L. Yu and C.-C. Yeh, "Generalized eigenspace-based beamformers," IEEE Trans. Signal 
Processing, vol. 43, 2453-2461, November 1995. 

7. M. Wax and T. Kailath, "Detection of signals by information theoretic criteria," IEEE ASSP, vol. 
33, 387-392, April 1985. 

8. MJ. Steiner and K. Gerlach, "Fast-converging maximum-likelihood adaptive signal processing," 
in 1998 IEEE National Radar Conference, May 1998. 



9.    M.J. Steiner and K. Gerlach, "Fast converging adaptive canceller for a structured covariance 
matrix," submitted to IEEE Trans, on Aerospace and Electronic Systems. 

10. G. Golub and C.V. Loan, Matrix Computations, Baltimore: The Johns Hopkins University Press, 
1996. 

11. K. Gerlach and F.F. Kretschmer, "Convergence properties of the Gram-Schmidt and SMI adaptive 
algorithms," IEEE Trans, on Aerospace and Electronics Systems, AES-25, No. 6, 854-866, Nov. 
1989. 

12. T.W. Anderson, "Asymptotic theory for principal component analysis," Ann. J. Math. Stat., vol. 
34, 122-148, 1963. 

13. G. Bienvenu and L. Kopp, "Optimally of high resolution array processing using the eigensystem 
approach," ASSP, vol. 31, no. 5, 1235-1247, 1983. 

14. M.I. Skolnik, Radar Handbook, McGraw-Hill, 1990. 

15. D.R. Fuhrmann, "Progress in structured covariance estimation," in Fourth Annual ASSP 
Workshop on Spectral Estimation and Modeling, 158-161, 1988. 

16. Y. Bresler, "Maximum likelihood estimation of a linear structured covariance with application to 
antenna array processing," in Fourth Annual ASSP Workshop on Spectral Estimation and 
Modeling, 172-175, 1988. 

17. O. Cheremisin, "Efficiency of adaptive algorithms with regularized sample covariance matrix," 
Radiotechnol. and Electron., vol. 2, no. 10. 1933-1941, in Russian. 

10 



2: 

-> • 

->  • 

N *►  • 

o 
c 

T3 

T3 

1) 

Ü 

i-u 

> 

c 

a» 
> a> 

a» 

li 



tu 

3 
CL, 

a 

C 
O 

1) 

12 



1st LEVEL 

2nd LEVEL 

J 'i 7 '■2 z 3 

A/ 

y r       i r V          v V          V 

V 

MFML2 MFML2 MFML2 

> r       y r i -    i -   1 
MFML2 MFML2 MFML2 

^ r i r v 

LN-1 

t U 

MFML, 

4^ 

N-2'th LEVEL t      " 
MFML, 

N-l'th LEVEL 
MFML, 

N'th LEVEL 

MFML, 

•   •     • 

Fig. 3 — Fast cascaded canceller. 
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Jammer angles invariant over monte carlos 
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Fig. 4 — Normalized S/I vs. no. of independent snapshots, K; N = 20, J = 1,0, = 40°, Pj = 30 dB, 
MC = 100, three canceller configurations: fee, fml, psmi. 
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jammer angles invariant over monte carlos 
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Fig  5 _ Normalized S/I vs. no. of independent snapshots, K; N = 20, J = 2, 0, - 40°, 60°, Pj     30 
dB, MC = 100, three canceller configurations: fee, final, psmi. 
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Jammer angles invariant over monte carlos 
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Fig. 6 — Normalized S/I vs. no. of independent snapshots, K; N = 20, / = 3, 0y = 20°, 40°, 60°, Pj 
= 30 dB, MC = 100, three canceller configurations: fee, fml, psmi. 
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Jammer angles invariant over monte carlos 
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Fig. 7 _ Normalized S/I vs. no. of independent snapshots, K; N = 20, J = 4,6j- 20°, 30°, 40°, 60°, 
P = 30 dB, MC = 100, three canceller configurations: fee, fml, psmi. 
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Jammer angles invariant over monte carlos 
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Fig. 8 — Normalized S/I vs. no. of independent snapshots, K; N = 20, J = 5, 0, = 20°, 30°, 40°, 50°, 
60°, Pj = 30 dB, MC = 100, three canceller configurations: fee, fml, psmi. 



averaged over jammer angles 
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Fig 9 - Normalized S/N vs. no. of independent snapshots, K;N=20,J = 4, jammer angles uniformly 
distributed [0, 360°], jammer powers uniformly distributed [15, 40] dB, MC = 100, three canceller 
configurations: fee, fml, psmi. 

19 
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Fig 10 - Normalized S/I vs. no. of independent snapshots, K;N=20,J= 5, jammer angles uniformly 
distributed [0, 360°], jammer powers uniformly distributed [15, 40] dB, MC = 100, three canceller 
configurations: fee, fml, psmi. 
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Fig 11 - Normalized S/I vs. no. of independent snapshots, K;N=20,J= 7, jammer angles uniformly 
distributed [0, 360°], jammer powers uniformly distributed [15, 40] dB, MC = 100, three canceller 
configurations: fee, fml, psmi. 
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averaged over jammer angles 
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Fig. 12 — Normalized S/I vs. no. of independent snapshots, K; N = 20, J = 10, jammer angles 
uniformly distributed [0, 360°], jammer powers uniformly distributed [15, 40] dB, MC = 100, three 
canceller configurations: fee, fml, psmi. 
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Jammer angles invariant over monte carlos 
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Fig. 13 — Sampled standard deviation vs. no. of independent snapshots, K; N - 20, J - 3, 6j - 20°, 
40°, 60°, Pj = 30 dB, MC = 100, three canceller configurations: fee, fml, psmi. 
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Fig. 14 — Sampled standard deviation vs. no. of independent snapshots, K; N = 20, J = 5, 6j - 20°, 
30°, 40°, 50°, 60°, Pj = 30 dB, MC = 100, three canceller configurations: fee, fml, psmi. 
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averaged over jammer angles 
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Fig. 15 — Sampled standard deviation vs. no. of independent snapshots, K; N = 20, J = 4, jammer 
angles uniformly distributed [0, 360°], jammer powers uniformly distributed [15, 40] dB, MC = 100, 
three canceller configurations: fee, fml, psmi. 
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averaged over jammer angles 

10 15 20 25 
no. of independent snapshots , K 

30 35 

Fig. 16 — Sampled standard deviation vs. no. of independent snapshots, K; N = 20, J = 7, jammer 
angles uniformly distributed [0, 360°], jammer powers uniformly distributed [15, 40] dB, MC = 100, 
three canceller configurations: fee, fml, psmi. 
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